Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. med. biol. res ; 42(1): 94-104, Jan. 2009. ilus, tab, graf
Article in English | LILACS | ID: lil-505422

ABSTRACT

The calyx of Held, a specialized synaptic terminal in the medial nucleus of the trapezoid body, undergoes a series of changes during postnatal development that prepares this synapse for reliable high frequency firing. These changes reduce short-term synaptic depression during tetanic stimulation and thereby prevent action potential failures during a stimulus train. We measured presynaptic membrane capacitance changes in calyces from young postnatal day 5-7 (p5-7) or older (p10-12) rat pups to examine the effect of calcium buffer capacity on vesicle pool size and the efficiency of exocytosis. Vesicle pool size was sensitive to the choice and concentration of exogenous Ca2+ buffer, and this sensitivity was much stronger in younger animals. Pool size and exocytosis efficiency in p5-7 calyces were depressed by 0.2 mM EGTA to a greater extent than with 0.05 mM BAPTA, even though BAPTA is a 100-fold faster Ca2+ buffer. However, this was not the case for p10-12 calyces. With 5 mM EGTA, exocytosis efficiency was reduced to a much larger extent in young calyces compared to older calyces. Depression of exocytosis using pairs of 10-ms depolarizations was reduced by 0.2 mM EGTA compared to 0.05 mM BAPTA to a similar extent in both age groups. These results indicate a developmentally regulated heterogeneity in the sensitivity of different vesicle pools to Ca2+ buffer capacity. We propose that, during development, a population of vesicles that are tightly coupled to Ca2+ channels expands at the expense of vesicles more distant from Ca2+ channels.


Subject(s)
Animals , Rats , Brain Stem/growth & development , Calcium Signaling/physiology , Calcium/physiology , Synaptic Transmission/physiology , Synaptic Vesicles/physiology , Animals, Newborn , Buffers , Brain Stem/physiology , Cochlea/innervation , Exocytosis/physiology , Rats, Sprague-Dawley
3.
Medicina (Ribeiräo Preto) ; 34(2): 154-169, abr.-jun.2001. ilus
Article in Portuguese | LILACS | ID: lil-316455

ABSTRACT

A presente revisäo aborda um ponto específico dentro da sinapse, provavelmente o mais crucial: as interações moleculares entre proteínas da membrana das vesículas sinápticas e da membrana plasmática pré-sináptica. Uma linguagem molecular muito precisa permite a fusäo entre as membranas da vesícula sináptica e a plasmática, fusäo que libera o neurotransmissor contido na vesícula para a fenda sináptica. A vesícula sináptica foi alvo, nos últimos anos, de uma verdadeira dissecçäo molecular. É a organela celular com a mais completa descriçäo estrutural e cinética de seus componentes protéicos. A descoberta de famílias de proteínas homólogas, presentes em todos os tipos celulares eucariotos, como a Rab e a SNARE (SNAP receptors), demonstrou que o ciclo da vesícula sináptica é uma interaçäo entre sistemas protéicos, universais e específicos, de regulaçäo do tráfego vesícular e de fusäo de membranas lipídicas. O endereçamento e o controle do fluxo das estruturas precursoras das vesículas sinápticas até o terminal sináptico säo realizados pela família Rab de pequenas GTPases. As proteínas da superfamília das kinesinas säo as responsáveis pela açäo mecânica no transporte anterógrado das estruturas precursoras, ao longo dos microtúbulos do citoesqueleto axonal. As proteínas SNARE realizam a fusäo das vesículas com a membrana do terminal pré-sináptico. A proteína sinaptotagmina controla a formaçäo do complexo SNARE em um modo dependente de cálcio. Embora já se tenha conhecimento da maior parte das proteínas envolvidas no ciclo da vesícula sináptica, tem-se ainda que elucidar muitas das funções e interrelações entre elas


Subject(s)
Humans , Neurotransmitter Agents , Synapses , Synaptic Vesicles/physiology , Origin of Life , Endocytosis , Exocytosis , Protein Transport
4.
Braz. j. med. biol. res ; 31(11): 1491-500, Nov. 1998. graf, ilus
Article in English | LILACS | ID: lil-224483

ABSTRACT

Optical tracers in conjunction with fluorescence microscopy have become widely used to follow the movement of synaptic vesicles in nerve terminals. The present review discusses the use of these optical methods to understand the regulation of exocytosis and endocytosis of synaptic vesicles. The maintenance of neurotransmission depends on the constant recycling of synaptic vesicles and important insights have been gained by visualization of vesicles with the vital dye FM1-43. A number of questions related to the control of recycling of synaptic vesicles by prolonged stimulation and the role of calcium to control membrane internalization are now being addressed. It is expected that optical monitoring of presynaptic activity coupled to appropriate genetic models will contribute to the understanding of membrane traffic in synaptic terminals.


Subject(s)
Cell Movement , Endocytosis , Exocytosis , Fluorescent Dyes , Nerve Endings , Synaptic Vesicles/physiology , Cell Membrane , Pyridinium Compounds , Synaptic Vesicles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL